Yvonne Leifels, Uwe Scheeler

GSI Helmholtz Centre for Heavy Ion Research

Darmstadt

Germany

G 5 1

Topics:

- 1. Overview of the laboratory
- 2. Parts of the accelerator facility
- 3. Operation possibilities and beam parameters
- 4. Experimental installations
- 5. Outlook

691

Accelerator facility

Beam time schedule

-details of August last year

-contains the sequence of approved beam requests of the experiments

-daily meeting for discussing and organizing details

2/:	2012	Aug	ust 2012		Schedule as of 27-Jun-2012			
Week 31	Week 32	W	eek 33	Week 34		Week 35		
1 2 3 4 5	6 7 8 9 10	11 12 13 14 15	16 17 18 19	20 21 2	22 23 24 25 26	27 28 29 30 31		
U258, Düllmann/Düllmann, 50Ti(PIG), 5.5-8.5 MeV/u, 1-2 particle-microAmps in X8, 50 Hz / >= 5 ms, X8 TASCA								
U277, Heinz/Heinz, 238U28+, 6 MeV/u, 1 mA, 1 Hz, no, Z7	a)		U2	72, Rosmej, (O/Rosmej, O., Ti, 4-7 Me min/2hours, no, Z	eV/u, 100pnA, 5Hz 10-15 26		
UBIO, Friedrich/Sch olz, Ti, 11.4	UMAT, Severin/Bende	ler, Ti, 4.8, 5 ms, 5Hz, M3	UBIO, Friedri 11.4 MeV/u, eir M-bri	ch/Scholz, U, iige TnA, 1 H anch	, , b)			
S411, Dendooven/Purushotha man, 238U, 1000 MeV/u,	c) S388, Muk (MUCIS, MeV/u,	kha/Litvinov, 36Ar , enriched), 1000 , 3e10/spill, 4 s	5415, Taieb/5 238U MEVVA, 1E9/spill,	Simon, Kelic, 1000 MeV/u 10 s extr.,	SBIO, Bert/Scholz, 1 100-600, 1e3 - 1e8 therapy conditions (12C EZR, B/spill, _{e)} (Cave M),		
SMAT, Schuster/Trautmann, 238U, 150-250 MeV/u, 5-9(kpill 1e extension								
E090, Hagmann/hagmann, 238U92+, 50-100 AMeV, aining 10*** ESP	E089, Bu MeV/u,	ussmann/Winters, C3+, 1 ı, 100 micro Ampere, ESF	22 E090, Hagma U92+, 50-100 10**8,	nn/hagmann, AMeV, einige ESR	9			

a) U252, Roth/Blazevic, 12C EZR, 3,6 MeV/u, 2 µA, Z6

b) UBIO, Friedrich/Scholz, C, 11.4 MeV/u, 1 Hz, M-branch

c) SESA, Scholz/Scholz, Ti, 1 GeV/u, 1e8 / spill, slow (5s) extraction, HTA

d) SESA, Scholz/Scholz, Ti, 1 GeV/u, 1e8 / spill, slow (5s) extraction, HTA

e) S401, Heuser/Kis, 84Kr Mucis, 1.4 GeV/u, 1e9/spill, long extraction, 10 s, HTB

Burkhard Kolb, Phone +49-6159-71 2667, E-Mall: beamtime@gsi.de

4 rows UNILAC 3 rows SIS 1 row ESR 27.06.12 11:09

UNILAC beam parameters

iso- tope	ele- ment	ion source	energy [MeV/u]	duty cycle [%]	charge state [exp.]	intensity [eµA]	intensity [pps]
12	С	ECR	5.9	26	2	21	1.7*10 ¹²
50	Ti	PIG	6.1	25	10	50	7.8*10 ¹²
64	Ni	ECR	5.5	27	9	30	5.6*10 ¹²
136	Xe	ECR	11.4	10	17	5	1.8*10 ¹¹
197	Au	PIG	4.8	15	24	18	7.0*1011

-duty cycle up to about 27% , depending on the rf- power

-energy from 3.6-12 MeV/u

-intensity depends on source and operation conditions

ECR-source

Alvarez-section

single gap resonators

6

SIS beam parameters

-high pulse current from UNILAC requested	isotope	element	ion source	charge state (SIS)	extraction energy [MeV/u]	intensity [ppp]	max. energy [MeV/u]
-extraction energy	2	D	MUCIS	1	1250	2.3*1010	2000
from 50keV/u to	86	Kr	MUCIS	33	730	1.5*10 ¹⁰	1400
2GeV/u	107	Ag	MEVVA	43	750	1.3*10 ⁹	1500
-beam cooling to	208	Bi	MEVVA	68	600	2.1*10 ⁹	1100
increase pulse intensity	238	U	MEVVA	73	600	3.0*10 ⁹	1000

one SIS section

rf-cavity

electron cooler

Accelerated isotopes

-uranium was often requested by many users

-medium heavy isotopes for superheavy production

-carbon for biological irradiations and the ESA program

Experimental program

Nuclear Physics

- Nuclear reactions up to highest energies
- Superheavy elements
- Hot dense nuclear matter

Atomic Physics

- Atomic Reactions
- Precision spectroscopy of highly charged ions

Biophysics and radiation medicine

- Radiobiological effect of ions
- Cancer therapy with ion beams

Plasma Physics (5%)

- Hot dense plasma
- Ion-plasma-interaction

Materials Research

- Ion-Solid-Interactions
- Structuring of materials with ion beams

Accelerator Technology

- Linear accelerator
- Synchrotrons and storage rings

651

Beam time distribution

Total beam time 2012 (hours)				
Unilac	4180			
ESR	1810			
SIS	2570			

GSĬ

Experimental sides - Unilac

TASCA

TrAnsactinide Separator and Chemistry Apparatus

Synthesis of SHE
 Preseparated SHE for chemical studies

Gas filled separator for transactinides (Z>104) J. Even et al., Nucl. Instrum. Meth. A638, 157-164 (2011)

Experimental sides - SIS

FRS

Fragmentseparator

Fragment separator

Separat or	∆р/р	Angular Acceptan ce (φ _x ,φ _y)	Solid- Angle	Βρ _{max}	Resolving Power D/∆X	45 -
	%	mrad	msr	Tm	(2x ₀ =1 mm)	40 -
FRS	2	30, 30	0.9	18	3131 (2x ₀ =2,7mm)	35- N 90
Big- RIPS	6	80, 100	8.0	9	1 st stage 1290 2 nd stage 3300 (2x ₀ =1mm)	25 -
A1900	5		8.0	6	2900	20 -
RIPS	6	80, 80	5.0	5.8	1500	15 -
Super- FRS	5	40, 20	3.2	20	3076	238U on H target at FRS

+ RIBLL 1+2, LISE-3, ALPHA, COMBAS, ACCULINA, EN, Triμp, CRIB, ...

ESR/EXL

Exotic Nuclei studied in Light ion induced reactions

- ⁵⁸Ni(p,p) and ⁵⁸Ni(α,α`): feasibility studies and proof of principles
 ⇒ UHV capability of detector setup, background conditions at ESR target
 ⁵⁶Ni(p,p): doubly magic pucleus ⁵⁶Ni; of
- ⁵⁶Ni(p,p): doubly magic nucleus ⁵⁶Ni: of high interest for structure and astrophysics
- EXL@NESR at FAIR

P. Egelhof et al.

05/16/2013

Y.Leifels ECOS Meeting

Outlook

Timeline start version

Submission building permits

Site preparation

Civil construction contracts

Building of accelerator & detector components

Completion of basic civil construction work

Installation & commissioning of accelerators and detectors Data taking

651

Thank you for your attention and a bright future for ALTO!

Further information:

email: y.leifels@gsi.de

u.scheeler@gsi.de

web: www.gsi.de

www.fair-center.de

G 5 1