

Actinide targets for superheavy element production

Klaus Eberhardt

University of Mainz, Germany

- Target production
- Target characterization
- New developments
- Future tasks

FUSHE 2012 – May, 13.-16. 2012 – Weilrod, Germany

SHE production with actinide targets

- E114 \Rightarrow ²⁴⁴Pu(⁴⁸Ca,xn)
- E115 \Rightarrow ²⁴³Am(⁴⁸Ca,xn)
- E116 \Rightarrow ²⁴⁸Cm(⁴⁸Ca,xn)
- E117 \Rightarrow ²⁴⁹Bk(⁴⁸Ca,xn)
- E119 \Rightarrow ²⁴⁹Bk(⁵⁰Ti,xn)
- E120 \Rightarrow ²⁴⁸Cm(⁵⁴Cr,xn)
- E120 \Rightarrow ²⁴⁹Cf(⁵⁰Ti,xn)

Target thickness: 500 µg/cm²

Requirements:

- Chemical purification prior to deposition (if necessary)
- Recovery of used target material (sooner or later.....)
- Small and simple set-up
- High deposition yield

Target production techniques:

- Painting
- Sputtering (²³⁸U)
- Molecular Plating

Rotating target wheels for high beam intensities

Backing:

- Ti-foils (2 µm) or C-foils
- Foils are glued onto Al-frame

TASCA target wheel @ GSI:

- Target area: 6 cm²
- 4 targets per wheel
- 12 mg per wheel @ 500 µg/cm²

Beam intensities:

DC-beam: 1-2 pµA

Pulsed beam (25% duty cycle): 1 pµA ≈ 4 pµA (Maximum)

Actinide deposition by Molecular Plating

Deposition of actinides by MP

Deposition of actinides by MP

Molecular Plating

- Deposition Yield: up to 90% for actinides
- Thickness: 500-1000µg/cm² possible in a single deposition step

Standard target characterization techniques

Deposition yield:

- α-particle spectroscopy
- γ-spectroscopy
- Neutron Activation Analysis

Layer homogeneity:

- α-particle spectroscopy
- Radiographic Imaging

[D. Liebe et al., Nucl. Instr. and Meth. A 590 (2008) 145]

Properties of actinide layers produced by MP

Studies on layer growth mechanism:

- Scanning Electron Microscopy (SEM) ⇒ µm-resolution
- Atomic Force Microscopy (AFM) ⇒ 10-100 nm-resolution

[A. Vascon et al., Nucl. Instr. and Meth. A 655 (2011) 72]

Chemical composition:

- X-ray Fluorescence (XRF)
- Photoelectron Spectroscopy (XPS)

Alternative target production techniques I

Polymer-assisted deposition (PAD):

Metal-oxide mixed with polymer solution. Spin-coating of silicon substrate with metal-organic film. Target thickness up to 600 μ g/cm² possible. No irradiation tests with actinide elements so far.

[M. Garcia *et al.,* Nucl. Instrum. Methods A 613 (2010) 396]

Electrodeposition using lonic Liquids (IL):

Ionic organic salts that are liquid at room temperature and serve as solvent for metal ions. Electrodeposition of U from IL already performed.

Alternative target production techniques II

Superhydrophobic surfaces:

Modification of a substrate with self-assembled monolayer (SAM) of alkyl chains. Homogenious deposition of metal-oxide/nitrate from aqueous solution by simple evaporation of single drops. No irradiation tests with actinide elements so far.

[D. Renisch et al., Nucl. Instrum. Methods A 676 (2012) 84]

JOHANNES GUTENBERG

Evaporation of a single drop of Am-241(nitrate) solution. Activity distribution by RI:

Alternative target production techniques III

Intermetallic targets:

Molecular Plating of a lanthanide/actinide compound on a Pd backing. Subsequent reduction by heating the target in a hydrogen atmosphere. Formation of intermetallic Ac-Pd phases. First in-beam irradiation tests performed.

[I. Usoltsev et al., contribution to TAN 11]

Gd-layer produced by MP

Tasks

- Target development for high intensity beams:
 - Explore limits of current target technology
 - Search for alternative backing materials
 - Develop new methods target production
 - ⇒ Beam time needed
- Study interaction of target material with backing (Ti) under long irradiation conditions with high intensity beams
 ⇒ Beam time needed
- Availability of facilities where targets (non-irradiated and irradiated) can be characterized with modern analytical techniques e.g. XRF, XRD, XPS, SEM, AFM
- Design of standard target wheel that can be applied at different accelerator facilities

INTDS 2012

26th World Conference of the International Nuclear Target Development Society

Targets for Accelerator-Based Research

Mainz, Germany, August 19 - 24, 2012

Scientific Advisory Committee:

- Christoph E. Düllmann, HI Mainz, Johannes Gutenberg-Universität, Mainz & GSI, Darmstadt, Germany
- · Klaus Eberhardt, Johannes Gutenberg-Universität, Mainz, Germany
- David Gilliam, NIST, Wahington, USA
- Birgit Kindler, GSI, Darmstadt, Germany
- Bettina Lommel, GSI, Darmstadt, Germany
- Dannie Steski, BNL, Upton NY, USA
- Thomas Stöhlker, HI Jena, Germany
- Anna Stolarz, HIL-UW, Warsaw, Poland
- Atsushi Yoshida, Riken, Japan

Local Organizing Committee:

- Klaus Eberhardt, Johannes Gutenberg-Universität, Mainz, Germany
- Birgit Kindler, GSI, Darmstadt, Germany
- · Tatiana Litvinova, GSI, Darmstadt, Germany
- Bettina Lommel, GSI, Darmstadt, Germany
- Siglind Raiss, GSI, Darmstadt, Germany
- · Petra Sach-Muth, Johannes Gutenberg-Universität, Mainz, Germany
- Brigitta Schausten, GSI, Darmstadt, Germany

Topics:

- · Preparation Techniques for Thin Films and Foils
- Stripper Foils
- Radioactive Targets
- High Power Targets
- Liquid and Gas Targets
- Isotopic Enrichment and Materials
- Target Characterization
- Targets and Coatings for Medical Radioisotope Production

www.gsi.de/intds2012

Contact:

Email: intds2012@gsi.de Web: www.gsi.de/intds2012

Dr. Klaus Eberhardt Johannes Gutenberg-Universität Mainz Institut für Kernchemie Fritz-Strassmann-Weg 2 D-55128 Mainz Germany Telephone: ++49 (0) 6131 39-25846 Telefax: ++49 (0) 6131 39-24488 Dr. Bettina Lommel GSI Helmholtzzentrum für Schwerionenforschung GmbH Target Laboratory Planckstrasse 1 D-64291 Darmstadt Germany Telephone: ++49 (0) 6159 71-2691 Telefax: ++49 (0) 6159 71-2166

HELMHOLTZ GEMEINSCHAFT

FUSHE 2012 – May, 13.-16. 2012 – Weilrod, Germany

....and you for your attention

BMBF for financial support

Bundesministerium für Bildung und Forschung

JOHANNES GUTENBERG UNIVERSITAT MAINZ

Lawrence Livermore National Laboratory providing Cm-248

Lawrence Berkeley National Laboratory providing Cf-249

