

# Collective properties/ in-beam spectroscopy

- -Motivation
- -Experimental Techniques
- -Results & Issues
- -Conclusion & Perspectives



## Motivation



S.Eeckhaudt, P.T.Greenlees et al., EPJA 26 (2005) 227

14.

# What can we learn from in-beam spectroscopy?

- Dynamic properties:  $\Im(\omega)$
- Correlations and shell effects
- Limits of stability
- Electromagnetic properties: single-particle spectra

#### Experimental techniques (1)

| <sup>244</sup> No                 | <sup>245</sup> No                 | <sup>246</sup> No      | <sup>247</sup> No      | <sup>248</sup> No              | <sup>249</sup> No   | <sup>250</sup> No      | <sup>251</sup> No | <sup>252</sup> No | <sup>253</sup> No | <sup>254</sup> No | <sup>255</sup> No | <sup>256</sup> No | <sup>257</sup> No   | 258 No            | 259 NO                                                      | <sup>260</sup> No | <sup>261</sup> No | <sup>262</sup> No | <sup>263</sup> No | <sup>264</sup> No | <sup>265</sup> No |  |
|-----------------------------------|-----------------------------------|------------------------|------------------------|--------------------------------|---------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
| 3.32s<br>a 1.82ms                 | 4.12s<br>α 14.4ms                 | 5.37s<br>a 338 μ s     | 7.39s<br>α 1.43ms      | 8.99s<br>α 694 μ s             | 54 µ s              | 5.6 µ s                | * 1.7 s<br>0.76 s | 2.4 s             | 1.7 m             | 48s<br>★0.28 s    | 3.1 m             | 2,91 s            | 25 s                | 1.2 ms            | 58 m                                                        | 106 ms            | α 11.3h           | 5 ms              | a 2.69d           | α 2.21d           | ≥22.2m<br>α 44.0m |  |
| <sup>243</sup> Md                 | <sup>244</sup> Md                 | <sup>245</sup> Md      | <sup>246</sup> Md      | <sup>247</sup> Md              | <sup>248</sup> Md   | <sup>249</sup> Md      | <sup>250</sup> Md | <sup>251</sup> Md | <sup>252</sup> Md | <sup>253</sup> Md | <sup>254</sup> Md | <sup>255</sup> Md | <sup>256</sup> Md   | <sup>257</sup> Md | <sup>258</sup> Md                                           | 25%Md             | <sup>260</sup> Md | <sup>261</sup> Md | $^{262}Md$        | <sup>263</sup> Md | <sup>264</sup> Md |  |
| 3.56s<br>a 50.3ms                 | 4.31s<br>α 11.2ms                 | ★0.35s<br>0.9ms        | 1.0s                   | *1.12 s<br>270 ms              | 7 s                 | 24 s<br>★1.9 s         | 52 s              | 4.0 m             | 4.8 m             | 12 m              | 28 m<br>10 m      | 27 m              | 1.302 h             | 5.52 h            | 51.5 d<br>★ 1 h                                             | 1.60.1            | 27.8.4            | ≥1.31y<br>a 1.07y | ≧24.1m<br>α 5.74y | ≥1.15h<br>α 4.42y | 2.90m<br>a 22.6d  |  |
| <sup>242</sup> Fm                 | <sup>243</sup> Fm                 | <sup>244</sup> Fm      | <sup>245</sup> Fm      | <sup>246</sup> Fm              | <sup>247</sup> Fm   | <sup>248</sup> Fm      | <sup>249</sup> Fm | <sup>250</sup> Fm | <sup>251</sup> Fm | <sup>252</sup> Fm | <sup>253</sup> Fm | <sup>254</sup> Fm | <sup>255</sup> Fm   | 256Fm             | <sup>257</sup> Fm                                           | <sup>258</sup> Fm | <sup>259</sup> Fm | <sup>260</sup> Fm | <sup>261</sup> Fm | <sup>262</sup> Fm | <sup>263</sup> Fm |  |
| 0.8 ms                            | 0.18 s                            | 3.3 ms                 | 4.2 s                  | 1.1 s                          | 35 s<br>★9.2 s      | 36 s                   | 2.6 m             | 30 m.<br>★1.8 s   | 5.30 h            | 1.058 d           | 3.00 d            | 3.240 h           | 20.07 h             | 2.627 h           | 100.5 d                                                     | 370 µ s           | 1.5 s             | 4 ms              | ≧46.3m            | α 25Öy            | 3.73m<br>a 334d   |  |
| <sup>241</sup> Es                 | <sup>242</sup> Es                 | <sup>243</sup> Es      | <sup>244</sup> Es      | <sup>245</sup> Es              | <sup>246</sup> Es   | <sup>247</sup> Es      | 248 Es            | <sup>249</sup> Es | <sup>250</sup> Es | 251 Es            | <sup>252</sup> Es | <sup>253</sup> Es | <sup>254</sup> Es   | 255 Es            | <sup>256</sup> Es                                           | <sup>257</sup> Es | <sup>258</sup> Es | <sup>259</sup> Es | <sup>260</sup> Es | <sup>261</sup> Es | <sup>262</sup> Es |  |
| 8s                                | 11 s                              | 21 s                   | 37 s                   | 1.1 m                          | 7.7 m               | 4.55 m                 | 27 m              | 1.7 h             | 8.6 h             | 1.375 d           | 1.291 y           | 20.47 d           | 275.7 d<br>*1.638 d | 39.8 d            | *7.6 h<br>25.4 m                                            | 7.7 d             | 50.0m             | 3.85h             | 2.75m             | 4.17m             | 7.378             |  |
| <sup>240</sup> Cf                 | <sup>241</sup> Cf                 | <sup>242</sup> Cf      | 243 Cf                 | <sup>244</sup> Cf              | <sup>245</sup> Cf   | 246 Cf                 | 247 Cf            | <sup>248</sup> Cf | <sup>49</sup> Cf  | <sup>40</sup> Cf  | <sup>1</sup> Cf   | <sup>252</sup> Cf | <sup>253</sup> Cf   | 254 Cf            | <sup>255</sup> Cf                                           | 256 Cf            | <sup>257</sup> Cf | <sup>258</sup> Cf | <sup>259</sup> Cf | <sup>260</sup> Cf | <sup>261</sup> Cf |  |
| 1.06 m                            | 3.78 m                            | 3.49 m                 | 10.7m                  | 19.4 m                         | 46.3m               | 1.49 d                 | 3.11 h            | 333.5 d           | 350.6 y           | 3.08 y            | 898 y             | 2.645 y           | 17.81 d             | 60.5.6            | 1.4 h                                                       | 12.3 m            | 9.80h             | 11.0h             | 5.38m             | 2.25m             | 7.95s             |  |
| <sup>239</sup> Bk                 | <sup>240</sup> Bk                 | <sup>241</sup> Bk      | <sup>242</sup> Bk      | 243 Bk                         | <sup>244</sup> Bk   | 245 Bk                 | <sup>246</sup> Bk | <sup>247</sup> Bk | <sup>248</sup> Bk | <sup>249</sup> Bk | <sup>250</sup> Bk | <sup>251</sup> Bk | 252 Bk              | <sup>253</sup> Bk | <sup>254</sup> Bk                                           | 255 Bk            | <sup>256</sup> Bk | <sup>257</sup> Bk | <sup>258</sup> Bk | 162               | 162               |  |
| 1.65m                             | 4.8 m                             | 4.6 m                  | 7.0 m                  | 4.5 h                          | 4.35 h              | 4.94 d                 | 1.80 d            | 1380 y            | >9 y              | 320 d             | 3.217 h           | 55.6 m            | 1.8m                | 51.3m             | 3.18m                                                       | 4.42m             | 38.0s             | 36.9s             | 10.1s             | 102               | 105               |  |
| 238Cm                             | 239Cm                             | <sup>240</sup> Cm      | <sup>241</sup> Cm      | <sup>242</sup> Cm              | <sup>243</sup> Cm   | <sup>244</sup> Cm      | 245Cn             | 246Cr             | <sup>247</sup> Cn | 48Cm              | 49Cm              | Cm                | <sup>151</sup> Cm   | <sup>252</sup> Cm | <sup>253</sup> Cm                                           | <sup>254</sup> Cm | <sup>255</sup> Cm | 160               | 161               |                   |                   |  |
| 2.4 h                             | 2.9 h                             | 27 d                   | 32.8 d                 | 162.79 d                       | 29.1 y              | 18.10 y                | 8500 y            | 4730 v            | 1.56-107          | 40=105            | 1.069 h           | 700.y             | 16.8 m              | 2.66h             | 10.0m                                                       | 2.09m             | 1.09m             | 100               | 101               |                   |                   |  |
| 237Am                             | 238Am                             | 239Am                  | 240Am                  | <sup>41</sup> Am               | <sup>242</sup> Am   | <sup>243</sup> Am      | 244Am             | 245Am             | 246Am             | 247Am             | <sup>248</sup> Am | <sup>249</sup> Am | <sup>250</sup> Am   | <sup>251</sup> Am | <sup>252</sup> Am                                           | <sup>253</sup> Am | 150               |                   |                   |                   |                   |  |
| 1.22 h                            | 1.63 h                            | 11.9 h                 | 2.12 d<br>*0.91ms      | 432.2 y                        | * 141 y<br>16.02 h  | 7370 y                 | 10.1 h<br>* 26 m  | 2.05 h            | 39 m<br>*25.0 m   | 23.0 m            | 2.63 m            | 3.03m             | 27.98               | 24.3s             | 9.88s                                                       | 7.52s             | 159               |                   |                   |                   |                   |  |
| <sup>236</sup> Pu                 | <sup>237</sup> Pu                 | <sup>238</sup> Pu      | <sup>239</sup> Pu      | <sup>240</sup> Pu              | <sup>241</sup> Pu   | <sup>242</sup> Pu      | <sup>243</sup> Pu | <sup>44</sup> Pu  | <sup>45</sup> Pu  | 46 Pu             | <sup>147</sup> Pu | <sup>248</sup> Pu | <sup>249</sup> Pu   | <sup>250</sup> Pu | <sup>251</sup> Pu                                           | 158               |                   |                   |                   |                   |                   |  |
| 2.858 y                           | 45.2 d                            | 87.74 y                | 2,41•10 <sup>4</sup> y | 6564 y                         | 14.35 y<br>* 23 µ s | 3.73•10 <sup>5</sup> y | 4.956 h           | .08•107           | 10.5 h            | 10.84 đ           | 2.27 d            | 1.71m             | 50.7s               | 26.6s             | 18.7s                                                       | 150               |                   |                   |                   |                   |                   |  |
| 235 Np                            | 236 Np                            | <sup>237</sup> Np      | 238 Np                 | 239 Np                         | <sup>240</sup> Np   | <sup>241</sup> Np      | <sup>242</sup> Np | <sup>243</sup> Np | <sup>244</sup> Np | <sup>245</sup> Np | <sup>246</sup> Np | <sup>247</sup> Np | <sup>248</sup> Np   | <sup>249</sup> Np | 157                                                         |                   |                   |                   |                   |                   |                   |  |
| 1.084 y                           | 1.54•10 <sup>5</sup> y<br>*22.5 h | 14•106                 | 2.117 d                | 2.3565 d                       | 1.032 h<br>*7.22 m  | 13.9 m                 | 5.5 m<br>*2.2 m   | 1.85 m            | 2.29 m            | 50.3s             | 25.1s             | 8.11s             | 6.31s               | 4.79s             | 107                                                         |                   |                   |                   |                   |                   |                   |  |
| 234 U                             | 235 U                             | <sup>236</sup> U       | <sup>237</sup> U       | <sup>238</sup> U               | <sup>239</sup> U    | 740 U                  | <sup>241</sup> U  | 742 U             | <sup>243</sup> U  | <sup>244</sup> U  | <sup>245</sup> U  | <sup>246</sup> U  | <sup>247</sup> U    | 156               |                                                             |                   |                   |                   |                   |                   |                   |  |
| 0.0055<br>2.455•10 <sup>5</sup> y | 0.720<br>7.038•10 y               | 2.34•10 <sup>7</sup> y | 6.75 d                 | 99.2745<br>468•10 <sup>5</sup> | 23.45 m             | 14.1 h                 | 18.4 m            | 16.8 m            | 3.19m             | 25.8s             | 32.7s             | 4.14s             | 4.98s               | 100               | Tran                                                        | ofor              | 8 in              |                   | tic               |                   |                   |  |
| <sup>233</sup> Pa                 | <sup>234</sup> Pa                 | <sup>235</sup> Pa      | <sup>236</sup> Pa      | <sup>237</sup> Pa              | <sup>238</sup> Pa   | <sup>239</sup> Pa      | <sup>240</sup> Pa | <sup>241</sup> Pa | <sup>242</sup> Pa | <sup>243</sup> Pa | <sup>244</sup> Pa | <sup>245</sup> Pa | 166                 |                   |                                                             |                   |                   |                   |                   |                   |                   |  |
| 26.967 d                          | 6.70 h<br>* 1.17 m                | 24.5 m                 | 9.1 m                  | 8.7 m                          | 2.3 m               | 1.77 h                 | 26.6 s            | 17.3s             | 11.4s             | 4.23s             | 4.34s             | 1.35s             | 155                 |                   | reactions on <sup>230</sup> U, <sup>237</sup> Np,           |                   |                   |                   |                   |                   |                   |  |
| <sup>232</sup> Th                 | 233 Th                            | 234 Th                 | <sup>235</sup> Th      | 236 Th                         | 237 Th              | 238 Th                 | <sup>239</sup> Th | <sup>240</sup> Th | <sup>241</sup> Th | <sup>242</sup> Th | 152               | 152 154           |                     | -                 | <sup>241</sup> Am, <sup>244</sup> Pu, <sup>248</sup> Cm and |                   |                   |                   |                   |                   |                   |  |
| 100                               | 21.83m                            | 24.10 d                | 7.1 m                  | 37.5 m                         | 4.7m                | 9.4m                   | 33.1s             | 11.2s             | 8.17s             | 2.32s             | 153 154           |                   |                     |                   | $^{249}Cf$ targets: $\alpha \sim mb$                        |                   |                   |                   |                   |                   |                   |  |
|                                   |                                   | 233 AC                 | 234 Ac                 | <sup>235</sup> Ac              | <sup>236</sup> Ac   | <sup>237</sup> Ac      | <sup>238</sup> Ac | <sup>239</sup> Ac | <sup>240</sup> Ac | 152               |                   |                   |                     |                   | 0                                                           | itar              | gets              | . 0               |                   |                   |                   |  |



Using the power of Gammasphere to identify the nucleus and pull out rotational sequences @ ATLAS, ANL



inelastic excitation: <sup>249</sup>Cf(<sup>207</sup>Pb,<sup>207</sup>Pb)<sup>249</sup>Cf @ 1.43 GeV

neutron transfer: <sup>248</sup>Cm(<sup>209</sup>Bi,<sup>208</sup>Bi)<sup>249</sup>Cm @ 1.45 GeV <sup>248</sup>Cm(<sup>209</sup>Bi,<sup>210</sup>Bi)<sup>247</sup>Cm



#### Experimental technique (2)



# Finding the needle in the haystack with a recoil filter





#### Current limit for in-beam spectroscopy **UYRTECH** 20 Rf Ka X-rays <sup>208</sup>Pb(<sup>40</sup>Ar,2n)<sup>246</sup>Fm 18 66 218 up to 71 pnA, 40 kHz 16 σ=11 nb 14 K<sub>6</sub> X-ray: Counts / 2keV 12 Pb X-rays J. Piot et al., Phys. Rev. C 85, 041301 (2012) 놂 10 167.8 keV 6+→ 4+ Pb X-rays 224.9 keV 8+→6+ 12 <sup>=</sup>m X-rays 10 278.4 ke\ 8 72.0 ke\ 100 200 400 14.2 keV 5+→ 14+ 300 500 Energy (keV) 6 <sup>208</sup>Pb(<sup>50</sup>Ti,2n)<sup>256</sup>Rf up to 45 pnA, 50 kHz σ=15 nb 100 200 300 400 500 600 Ey (keV)

Hits / 1 keV

P.T. Greenlees, submitted to Phys. Rev. Lett.

#### Moments of inertia in gs bands of e-e nuclei



$$\mathfrak{T}^{(1)} = \hbar^2 I_x \left(\frac{dE}{dI_x}\right)^{-1} = \hbar \frac{I_x}{\omega}$$
$$\mathfrak{T}^{(2)} = \hbar \frac{dI_x}{d\omega} \approx \frac{4\hbar^2}{\Delta E_\gamma}$$
$$\hbar \omega = \frac{dE}{dI_x} \approx \frac{E_\gamma}{2}$$

Coriolis anti-pairing force proportional to I and j

Aligning pairs:  $\pi i_{13/2}$ ,  $\nu j_{15/2}$ 

### New (preliminary) data



### Comparison to theory

The different behaviours of the moment of inertia are attributed to the competition between neutron  $j_{15/2}$  and proton  $i_{13/2}$  alignment effects



#### Are we at the limit in spin ? Detector Electronics calorimetric technique @ GAMMASPHERE $\epsilon_{GS}(110 \text{ Ge})=9\% \rightarrow \epsilon_{GS}(110 \text{ (Ge+7 BGO)})=78\%$ BGO Suppressor Plug Liquid Nitrogen Ge Detector Total pulse height $H=\Sigma h_i$ Dewar Hevimet Number of firing modules K Shield detector response BGO Suppressor Support Shield function & transformation Gamma-ray Hemisphere Source Total energy E\* Total spin I E\* $E_{max}^{*}(kin) = E_{CN} - S_{n1} - S_{n2}$ $B_{f}(20 h)$ E<sub>1/2</sub> $\Delta B$ B<sub>6</sub>(20 k) ම l= 20 ħ

#### Maximum energy & spin in <sup>254</sup>No

G. Henning, T.L. Khoo, A. Lopez-Martens et al., PRELIMINARY



Increase in the maximum spin going from  $E_b=219$  to 223 MeV Saturation in E<sup>\*</sup>  $\Leftrightarrow$  direct barrier effect

### $E_2^+$ energies

Pairing correlations are reduced at a deformed shell gap

 $\Rightarrow$  larger  $\Im \Rightarrow$  smaller  $E_2^+$ 

A. Sobiczewski, I. Muntian, and Z. Patyk., Phys. Rev. C. 63 (2001) 034306



#### Special <sup>248</sup>Cf



s.p. levels for <sup>252</sup>No from the Woods-Saxon potential with the universal parameter set

A.P. Robinson et al., Phys. Rev. C 78, 034308 (2008)

Low energy of the 2- state in <sup>248</sup>Cf  $\Rightarrow$  near degeneracy of the 7/2[633] $\pi$  and 3/2[621] $\pi$  levels

#### What do the models say ?



D. Seweryniak et al., Nucl. Phys. A 834 (2010) 357c

The position and nature of 2qp also reflects the energy and sequence of sp levels



e-



G.D. Jones calorimetric method : Nucl. Instr. Meth. A488 (2002) 471



#### K=8<sup>-</sup> band in N=150 isotones



TABLE I. Experimental and theoretical reduced transition probabilities B(M1)/B(E2).

| Initial<br>spin (ħ)                 | B(M1)/B(E2)<br>th. $(\mu_N/eb)^2$ | B(M1)/B(E2)<br>th. $(\mu_N/eb)^2$ | B(M1)/B(E2)<br>expt. $(\mu_N/eb)^2$ |
|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|
| $K^{\pi} = 2^{-}$ band <sup>a</sup> |                                   |                                   |                                     |
| 7                                   | -                                 | 0.03                              | 0.02(1)                             |
| $K^{\pi} = 8^{-}$ band              | proton <sup>b</sup>               | neutron <sup>c</sup>              |                                     |
| 14                                  | 0.77                              | 0.38                              | 0.2(1)                              |
| 15                                  | 0.71                              | 0.35                              | 0.3(1)                              |
| 16                                  | 0.67                              | 0.32                              | 0.3(1)                              |

 ${}^{a}\nu[734]9/2^{-}\otimes\nu[622]5/2^{+}$  configuration only.

 ${}^{b}\pi[624]9/2^{+} \otimes \pi[514]7/2^{-}$  configuration.

 $^{\circ}\nu[734]9/2^{-} \otimes \nu[624]7/2^{+}$  configuration.

 $^{252}No:$  0.109 s K=8  $^{-}$  state also unambiguously assigned as a 7/2+[624]v  $\otimes$  9/2-[734] v configuration

B. Sulignano et al., to be published

#### What about the K=8- band in <sup>254</sup>No ?





Experiment accepted @ JYFL to study the structure of the high-K state in <sup>254</sup>No (P. Papadakis et al.,)

#### Kinks in the moments of inertia



theory: triaxial HBF calculations using D1S force and breaking time-reversal and z-signature symmetries J. -P. Delaroche et al., Nucl. Phys. A 771, 103 (2006)



#### Case of <sup>253</sup>No

<sup>207</sup>Pb(<sup>48</sup>Ca,2n)<sup>253</sup>No,  $\alpha$ -decay: gs based on v9/2<sup>-</sup>[734] state g<sub>k</sub>= -0.24



P. Reiter et al. Phys. Rev. Lett. 95 (2005) 032501

#### <sup>253</sup>No: gs or excited band ?



Sarah Eeckhaudt, PhD thesis,University of Jyväskylä, 2006 R.D.Herzberg, et al.,Eur. Phys. J. A42 (2009) 333.

## Prompt electron spectroscopy



Observed spectrum is consistent with a band built on the v7/2-[734] state

<sup>253</sup>No & <sup>255</sup>Lr revisited recently with SAGE

## Silicon And GErmanium array





<sup>205</sup>Tl(<sup>48</sup>Ca,2n)<sup>251</sup>Md

recoil-gated e<sup>-</sup> spectrum:

clear signal of the conversion of a 390 keV M1 transition

## Issues (1)

- availability of long-lived (trans)actinide targets
- maximum allowed activity at various facilities and other security issues
- count rates in the arrays due to the activity of the target



## Issues (2)

What statistics is required to perform "meaningful" & unambiguous spectroscopy ?

244

Md

243

Fm

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 107 Bh 252 253 255 256 257 259 260 261 262 263 264 265 254 258 266 267 106 Sg 252 256 258 259 251 253 254 255 257 260 261 262 263 264 265 266 105 Db 260 255 256 258 250 251 252 253 254 257 259 262 263 264 265 261 104 Rf 249 250 251 252 253 254 258 261 262 263 264 255 256 257 259 260 103 Lr 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 102 No 245 246 247 248 250 251 252 253 255 256 257 258 259 260 249 254 261 Md 245 247 246 244 248 249 250 251 252 253 254 255 256 257 258 259 260 Fm 146 148 150 160 152 154 156 158

 $\sigma$  = current 10 nb limit

<sub>90</sub>Th, <sub>92</sub>U, <sub>94</sub>Pu, <sub>95</sub>Am, <sub>96</sub>Cm targets

## Issues (3)

- How can we go further ?

new arrays/focal plane setups: x 2-4 more beam: x 2-5 better transmission (reaction-dependent): x 1.5-2

~1-2 places to the right ~2-3 places up

-Should we concentrate on getting more detailed data (other observables ?) on lighter species ?

- What production rates do we expect for fusion with RIBS ?

PHYSICAL REVIEW C 76, 014612 (2007)

Synthesis of transactinide nuclei using radioactive beams

W. Loveland Dept. of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA (Received 19 March 2007; published 24 July 2007)

- What cross-sections do we expect in multi-nucleon transfer: <sup>238</sup>U+<sup>232</sup>Th, <sup>248</sup>Cm...?

-Problem of clean recoil tag in the case of very low production cross sections and transmission in the case of hot fusion reactions with light projectiles (separator-dependent)

## **Conclusion & Perspectives**

- a lot of new & interesting data
- complementarity with decay data

#### Exciting times ahead !

- prompt conversion-electron with SAGE
- prompt spectroscopy with GRETINA & AGATA's enhanced efficiency
- upgrades/improvements to existing setups and facilities
- new modes of production: fusion with RIBS and multi-nucleon transfer (cross sections x beam intensities ?)

## Evidence for phonon states (1)

S.W. Yates et al., Phys. Rev. C12 (1975) 442



248Cf





FIG. 2. Triton spectrum from the  ${}^{249}Cf(d,t){}^{248}Cf$  reaction observed at 120°. The spectrum was measured with a split-pole magnetic spectrograph.

Population of two 2<sup>-</sup> states at 592 and 1477 keV in <sup>248</sup>Cf

Only 1 K<sup> $\pi$ </sup>=2<sup>-</sup> neutron 2qp state expected < 2 MeV:  $\{9/2^{-}[734]; 5/2^{+}[622]\}v$ 

⇒ Other 2<sup>-</sup> state must be predominantly a phonon state

## Evidence for phonon states (2)

#### <sup>249</sup>Cf(d,d'):

sizeable population of  $5/2^+$  state at 145 keV => mixing with the  $\{9/2-[734]\otimes 2^-$  phonon $\}$  configuration

Phonon admixture into the 5/2+ state measured to be ~30% in <sup>249</sup>Cf (a similar value is obtained from the M2-E3 mixing ratio of the 145 keV transition => B(E3)=10 Wu)

Phonon admixture deduced to be ~15% in  $^{247}$ Cm from M2-E3 mixing ratio => B(E3)= 5 Wu



(19/2+)

1340



#### What do the masses say ?



Gap @ Z=100 & N=152 Strong collective effects in Cf isotopes with peak effect @ N=150